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Abstract. The representation of aerosol–cloud interactions (ACI) processes in the climate models, although long studied,

still remains the source of high uncertainty. Very often there is a mismatch between the scale of observations used for ACI

quantification and the ACI process itself. This can be changed by using the observations from ground-based remote sensing

instruments. In this paper we presented a direct application of the Aerosol–Cloud Interactions monitoring technique (ACI

monitoring). ACI monitoring is based on the standardized Cloudnet data stream, which provides measurements from ground-5

based remote sensing instruments working in synergy. For the dataset collected at the CESAR Observatory in the Netherlands

we calculate ACI metrics. We use specifically attenuated backscatter coefficient (ATB) for the characterisation of the aerosol

properties and cloud droplets effective radius (re) and number concentration (Nd) for the characterisation of the cloud properties.

We calculate two metrics: ACIr = ln(re)/ln(ATB) and ACIN = ln(Nd)/ln(ATB). The calculated values of ACIr were ranging from

0.016 to 0.17, which corresponds to the values reported in previous studies. We also evaluated impact of the updraft and liquid10

water path (LWP) on ACI metrics. The values of ACIr were highest for the LWP between 50 and 100 g/m2. For the higher

LWP other processes, such as collision and coalescence, seem to be dominant and obscure the ACI processes. We also saw that

the values of ACIr are higher when only data points located in the updraft area are considered. The method presented in this

study enables monitoring aerosol–cloud interactions daily and further aggregating daily data into bigger datasets.
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1 Introduction

Clouds are one of the most important systems of regulating Earth’s radiation. Through changes in their macro- and micro-

physical properties clouds can significantly effect climate (Ramaswamy et al., 2001). Aerosol and their ability to act as cloud

condensation nuclei can alter cloud microphysical properties. Twomey (1977) was the first one to postulate that the increasing

pollution, later represented by aerosol concentration, will lead to an increasing cloud droplets concentration and a decreasing5

cloud droplets size. The effect of those microphysical changes is an increased albedo of clouds. Despite the good understanding

of the physical principles of the aerosol–cloud interactions (ACI) processes, their representation in the climate models remains

the source of the highest uncertainty (IPCC, 2014).

The conceptual process in which aerosol become activated into cloud droplets is well understood (Stephens, 1978; Lamb and

Verlinde, 2011). Also, the influence of the aerosol concentration on the cloud microphysical properties, i.e. cloud droplets size10

and number concentration, has been studied extensively over the past decades (Feingold et al., 2003; Twohy et al., 2005; Kim

et al., 2008; McComiskey et al., 2009) and its existence is not in question. The biggest uncertainty still lies with the scale

of the process and it’s importance over different locations and in different meteorological conditions. McComiskey and Fein-

gold (2012) identified the mismatch in the scale of the ACI process and in the scale of the observations as one of the largest

drivers of uncertainty in quantifying ACI. One possible way of overcoming this problem is by using the observations from15

ground-based remote sensing instruments. Ground-based remote sensing instruments are uniquely predisposed to provide high

temporal resolution of measurements continuously. At the same time, they can examine the effect of aerosol concentration on

cloud in a single air column and at the scale of the cloud droplets formation.

In the past years several studies used measurements from ground-based remote sensing instruments to quantify ACI (e.g., Fein-

gold et al., 2003; Garrett et al., 2004; Pandithurai et al., 2009; Schmidt et al., 2015). The scope of instruments and measured20

parameters still differs among them. Further, a great majority of ACI studies is focused on the marine or coastal environment.

Although harder to observe, ACI over continents is important to make a link between anthropogenic aerosol and the climate

change through the ACI process.

A new approach to monitor ACI based on the standardize data format was proposed by Sarna and Russchenberg (2016). Their

method (hereafter refereed to as ACI monitoring) is based on the Cloudnet data (Illingworth et al., 2007), a unified data format25

that is available across the Cloudnet network observatories. ACI monitoring also supplied an open-source software (Sarna,

2015) to process data from any Cloudnet station. In this paper we applied this method directly to the dataset from the CESAR

(Cabauw Experimental Site for Atmospheric Research) Observatory.

The structure of this paper is as follows. First we present shortly the theoretical framework for calculations. Following by a

description of the CESAR Observatory and the used dataset. Then we characterize ACI over CESAR Observatory and describe30

different drivers of the ACI process at this station. We finish with a summary and conclusions.
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2 Theoretical basis of aerosol–cloud interactions

The relation between aerosol concentrations and the cloud droplets size was first postulated by Twomey (1974). Using airborne

measurements he showed that an increasing pollution, and hence an increasing concentration of CCN, will result in clouds with

a higher optical thickness. That is measureable only if all other parameters, mainly the amount of available water represented

by the liquid water path (LWP), are kept the same. Cloud optical thickness can be related to both the cloud albedo and cloud5

microphysical properties. Cloud optical thickness (τ d) is proportional both to the cloud droplets number concentration (Nd):

τd ∝N1/3
d (1)

(Twomey, 1974), and to the cloud droplets effective radius (re):

τd ∝
LWP

re
(2)

(Stephens, 1978).10

The increasing pollution that Twomey (1974) referred to is now represented by aerosol background. Proxies used to define the

aerosol background vary between studies and include parameters such as: aerosol number concentration (Na), aerosol optical

thickness (τ a), or aerosol index.

The relation between Nd and Na was postulated first based on the experimental studies by Twomey and Warner (1967) as

Nd ∝Nγ
a , (3)15

where γ is the proportionality factor. The theoretical values of γ vary between 1 and 0. To account for γ, Feingold et al. (2003)

introduced the indirect effect index, which hereafter will be refereed to as ACI metric. It was defined as a relative change in

the cloud properties due to changes in the aerosol properties. In the form that directly relates to Eq.3 we can say that

ACIN =
d lnNd
d lnα

0<ACIN < 1, (4)

where α is any of the above mentioned proxies of the aerosol properties. The value of ACIN can be related to the value of γ.20

To relate aerosol properties to cloud droplets size Feingold et al. (2003) used

ACIr =− d ln re
d lnα

∣∣∣∣
LWP

0<ACIr < 0.33, (5)

where re is the cloud droplets effective radius. The bounds of ACIr between 0 and 0.33 stem from the assumption of a constant

LWP when using re. ACIN is traditionally not bound by the values of LWP as it’s associated with the activation process which

has no direct microphysical relation to LWP (McComiskey et al., 2009). The relation between ACIr and ACIN is described as:25

ACIr =
1
3
ACIN . (6)

Mathematically, both ACIr and ACIN are defined as a slope of the regression line between the logarithm of the aerosol property

and the logarithm of the cloud property. We can define a linear regression between aerosol and cloud property as:

ln(cloud) = a+mln(aerosol) (7)30
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where m is the slope defined as:

m= raerosol,cloud
scloud
saerosol

, (8)

where raerosol,cloud is the Pearson product-moment correlation coefficient between ln(aerosol) and ln(cloud), scloud is the standard

deviation of ln(cloud) and saerosol is the standard deviation of ln(aerosol). The correlations coefficient raerosol,cloud is defined as:

raerosol,cloud =
cov(aerosol,cloud)
saerosolscloud

. (9)5

cov(aerosol,cloud) is the covariance between ln(aerosol) and ln(cloud). In this study we use ACI monitoring scheme which

relies both on the calculation of the correlation coefficient and ACI metrics (ACIN and ACIr).

3 Methodology of ACI monitoring scheme

As we mentioned in previous sections, in this paper we use the Aerosol–Cloud Interaction (ACI) monitoring scheme as de-

scribed in Sarna and Russchenberg (2016). The core of this method is the Cloudnet dataset. It provides a standardized data10

stream from ground-based remote sensing instruments working in synergy. In specific, it includes measurements from cloud

radar, lidar and microwave radiometer. Although this is a set of instruments present at all observatories within the Cloudnet

network, their specification may vary from station to station.

Cloudnet dataset was designed to facilitate retrieval of microphysical cloud properties. Therefore, a retrieved values of cloud

droplets effective radius (re) and cloud droplets number concentration (Nd) are available from the dataset. The microphysical15

retrieval method used in the Cloudnet dataset is based on the method designed by Frisch et al. (2002). In this paper we use

the Frisch et al. (2002) retrieval with the assumptions of homogeneous mixing as described in Knist (2014). The aerosol back-

ground is represented in the ACI monitoring scheme by an integrated value of the attenuated backscatter coefficient (ATB). The

value is integrated from the height of a complete overlap (Kovalev, 2015), which is 120 m in the setup of this study, to 300 m

below the cloud base.20

3.1 Data selection criteria

Due to the use of cloud microphysical properties the ACI monitoring scheme is applicable only in specific conditions. In

particular, only low-level liquid water clouds in well-mixed conditions can be considered. The cloud base should be located

below 2000 m above ground level (AGL), a limit used for the classification of low-level clouds. Due to the integrations of25

ATB only clouds with cloud base located above 500 m AGL are considered. This is because the complete overlap is at 120 m

and data is only considered up to 300 m below the cloud. ATB should be integrated through at least 2 range gates of the used

lidar, which for most Cloudnet observatories are 40 m wide. Other criteria include presence of precipitation or drizzle. The

Cloudnet dataset contains target classification where liquid cloud droplets are categorized specifically (Hogan and O’Connor,

2004). ACI monitoring scheme selects only data points where liquid cloud droplets and aerosol are identified. All other data30
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points are disregarded.

For the dataset used in this study we aggregated daily data into one dataset. The data aggregation is only possible if data

was collected in similar meteorological conditions. We define the meteorological conditions on the basis of temperature and

pressure. We considered conditions to be similar if the relative standard deviation (rsd) of the measurements is less than 0.1.

The relative standard deviation is defined as a ratio of the standard deviation of the dataset to the mean of the dataset. Additional5

meteorological parameter that we use is the specific humidity. However, the changes in the specific humidity can be larger than

those in temperature or pressure. A parameter which controls the constant conditions of the available water is the liquid water

path (LWP). All selected data points are divided into bins of LWP, where each bin is 10 g/m2 wide. It should be noted that

meteorological conditions available in the Cloudnet dataset come from the KNMI (Koninklijk Nederlands Meteorologisch

Instituut) regional atmospheric climate model RACMO (Van Meijgaard et al., 2008) and not from the observations.10

4 Observations from CESAR Observatory

The CESAR (Cabauw Experimental Site for Atmospheric Research) Observatory is located in the Netherlands (51.971° N,

4.927° E) in an area located 0.7 m below the mean sea level. The site is equipped with a large set of instruments providing

constant measurements to study atmospheric processes. The dataset used in this study was collected in October - November

2014 during the ACCEPT (Analysis of the Composition of mixed-phase Clouds with Extended Polarization Techniques) cam-15

paign. Although ACCEPT campaign was focused on mixed-phase clouds, multiple measurements of low-level liquid water

clouds were also collected. During the six weeks period of the campaign seven days were represented by a persisting layer

of Stratocumulus clouds. Due to the requirements of the ACI monitoring scheme, after applying data selection criteria (see

Section 3.1) only four days of data were processed. The total amount of measurements profiles used in this study is 1664.

We used one additional requirement to choose them: we only processed profiles where the Stratocumulus layer was persisting20

for at least 30 minutes. This meant that we only chose data were at least 60 profiles of 30 sec integrated measurements were

consecutive. We chose to add this selection criteria to eliminate from the aggregated dataset days were only a couple of profiles

responding to all selection criteria were available.

4.1 Instrumentation

One of the main objectives of the ACI monitoring scheme was to develop a method that can be easily applied at various obser-25

vatories. To achieve that it was necessary to base this method on a widely spread set of instruments. Those instruments include

cloud radar, lidar and microwave radiometer. In this study we used specifically data from: (1) a Ka-band 35.5 GHz Cloud radar

MIRA, (2) a CHM15X ceilometer operating at 1064 nm and (3) HATPRO (Humidity and Temperature Profiler) microwave

radiometer (MWR) operating at 14 frequencies - 7 frequencies between 22 and 31 GHz (K-band) and 7 frequencies between

51 and 58 GHz (V-Band). Data from cloud radar MIRA and HATPRO MWR is used for the retrieval of cloud microphysi-30

cal properties, specifically cloud droplets effective radius re and cloud droplets number concentration Nd. Both microphysical

parameters are retrieved in accordance with Knist (2014). Data is re-sampled to an uniform time-height resolution. Time res-
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olution is 30 seconds and height resolution (range gate) is 31.2 meters. Moreover, cloud radar MIRA measures the Doppler

velocity, which is used to measure updraft within the cloud. Data from HATPRO MWR is also used to measure liquid water

path (LWP), which is used to divide data into bins. This division is made in order to consider data in conditions approach-

ing constant amount of water available. In principle the size of LWP bins should be as small as possible. In order to have a

representable data sample we make each bin 10 g/m2 wide. Finally, data from CHM15X ceilometer is used to measure the5

aerosol concentration. We use the integrated value of the attenuated backscatter coefficient (ATB) as a proxy of the aerosol

concentration. Table 1 summarises all used parameters and the instruments that were used to measure and/or retrieve them.

4.2 Aerosol background at CESAR

A limited amount of studies of ACI processes was focused until now on the continental low-level liquid water clouds (e.g.,

Feingold et al., 2003; Ahmad et al., 2013). Most studies were focused on marine or coastal liquid water clouds (e.g., Mc-10

Comiskey et al., 2009; Pandithurai et al., 2009; Twohy et al., 2005). The CESAR Observatory is located in the western part of

the Netherlands. The liquid water clouds observed over CESAR have characteristics of continental clouds. Further, the aerosol

background is typically continental. Aerosol over CESAR are mainly represented by an organic aerosol as well as high concen-

tration of ammonium nitrate (Mensah et al., 2012). This type of aerosol background is important to study as it can be directly

related to the anthropogenic emissions (Putaud et al., 2004).15

4.3 Selected dataset

As we mentioned in the previous sections, due to the microphysical scale of the ACI processes data need to be aggregated only

in similar meteorological conditions (as defined in Section 3.1). This is to make sure that ACI processes is not obscured by

other meteorological processes. Figure 1 presents histograms of the meteorological conditions of the aggregated dataset. The

values of pressure and temperature show small variation, represented by a small value of the relative standard deviation (rsd),20

0.03 for pressure and 0.01 for temperature. The variation of specific humidity is larger, with rsd of 0.22. However, to secure that

the amount of available water is constant, we divide data into bins of LWP. It is important to note that for the Cloudnet dataset

meteorological conditions are provided by the KNMI Regional Atmospheric Climate Model (RACMO) (Van Meijgaard et al.,

2008).

The histograms of all measured and retrieved parameters used in this study, as summarised in Table 1, for the selected dataset25

are presented on Figure 2. It is important to note that for the calculation of ACI metric (as defined in Eq. 5 and Eq. 4) re, Nd

and ATB are logarithmically transformed. By calculating the logarithmic slope we are accounting for the relative response of

re and Nd to changes in aerosol (ATB).

We use an additional measurement from cloud radar, the Doppler velocity, to measure updraft and downdraft. The ACI metrics

are expected to be stronger in the updraft areas as that’s where aerosol is activated into cloud droplets. Figure 3 presents the30

histogram of Doppler velocity in the aggregated dataset. Note that we use the average measure of the updraft from the cloud

base to two gate ranges within the cloud.
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5 Results and discussion

5.1 ACI metrics

ACI metrics are calculated for the aggregated dataset from CESAR Observatory. We check the response of cloud microphysical

properties (re and Nd) to aerosol properties (aerosol concentration is represented by ATB). To accurately quantify ACI the

amount of available water should be kept constant. To meet this requirement we divide data into bins of LWP. Each LWP bin5

is 10 gm-2 wide. Calculations are made for the bins between 30 and 150 gm-2. The lower limit of the LWP analysis range was

chosen as twice the error of the HATPRO MWR measurements (15 gm-2). The upper limit is the precipitation threshold. For

every LWP bin we also calculate the Pearson product-moment correlation coefficient, r (Eq. 9).

5.1.1 ACIr

To calculate ACIr we used Eq. 5. Figure 4 presents scatter plots of re and ATB. Each panel corresponds to a LWP bin and10

presents the corresponding value of ACIr and correlation coefficient, r. The range of values within the physical limits (between

0 and 0.33, see Section 2) is from 0.016 to 0.171. This values are in agreement with other studies concerned with quantifying

ACIr in continental clouds. Kim et al. (2008) reported values of ACIr between 0.04 and 0.17 in a study over the ground-based

remote sensing site at the Southern Plains in Oklahoma, USA. For the same site, Feingold et al. (2003) reported values of ACIr

between 0.02 and 0.16.15

In the dataset from CESAR Observatory we can see that values of ACIr are generally within the physical limits for the LWP

values from 30 to 110 gm-2. This may indicate that ACIr is only a significant process in certain LWPs and for the higher values

other processes within the cloud, such as collision and coalescence for example, are dominant and obscure the ACI process. To

further investigate the impact of LWP on ACIr we selected only the profiles which were corresponding to the updraft area. This

was done based on the Doppler velocity. Figure 5 presents scatter plots of re and ATB for every bin in the updraft area. Firstly,20

it’s important to note that the dataset is significantly limited when considering only the updraft area. However, we observe a

considerable increase in the value of both ACIr and the correlation coefficient, r. Table 2 compares the calculated values of

ACIr and the correlation coefficient, r, for the whole dataset and for the updraft area only. Again, we can see that the values of

ACIr are higher for the smaller values of LWP. ACIr seems to be most significant for the values of LWP between 50 and 100

gm-2. Note that for LWP above 100 gm-2 values of ACIr are also high in the updraft area, however the sample size is too small25

for those bins to draw any relevant conclusions.

5.1.2 ACIN

The response of the cloud droplets concentration to the aerosol background is an approximation of the activation process.

ACIN can be directly linked to Eq. 3. We calculate the relative change of Nd with the change of ATB from Eq. 4. For the

aggregated dataset from CESAR Observatory the value of ACIN is 0.19. Figure 6 presents the scatter plot of Nd and ATB. The30

value of 0.19 is very small, often values reported in the literature vary between 0.48 and 0.99 (McComiskey et al., 2009, and
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references within). However, it has been noted before that the size of aerosol may influence the value of ACIN. Smaller aerosol

size tends to yield smaller ACIN (McComiskey et al., 2009). Based on the aerosol background at the CESAR Observatory (see

Section 4.2) we expect a smaller size of the aerosol particles. It is also important to note that the retrieval of Nd has very high

estimated uncertainties, ranging between 40 and 60% (Knist, 2014). Those uncertainties are mainly due to the instruments and

algorithms errors. By comparison, the uncertainty of the re ranges between 10 and 15%. We suspect that this high uncertainty5

is responsible for the low value of ACIN calculated for the whole dataset.

As we mentioned above, based on the theoretical relationships between aerosol and cloud droplets ACIN is not dependent on

the LWP. However, in this study we decided to test if there is a dependence of ACIN on the LWP by dividing data into the same

bins of LWP as with the calculation of ACIr. Figure 7 presents the scatter plots of Nd and ATB divided into bins of LWP. What

is striking, is that same as in the case of ACIr the highest values of ACIN are present in the range between 50 and 110 gm-2. We10

further selected only the points within the updraft areas. Table 3 presents the comparison of the ACIN calculated for each LWP

bin for the whole dataset and only for the updraft areas. Again, consistently with ACIr, the highest values of ACIN are noted

for the LWP between 60 and 80 gm-2.

ACIN and ACIr are theoretically related as in Eq. 6. In the dataset analysed in this study this relation is not always present. We

expect that the main reason for that is the high uncertainty of the Nd retrieval. Also, ACIN is harder to measure Based on this15

study, we can say that ACIr seems to give more realistic results as they are broadly in agreement with the previous studies (see

Section 5.1.1).

5.2 Impact of the updraft

Activation of the aerosol particles into cloud droplets is invigorated in the updraft zones (Altaratz et al., 2014). In this study we

identified updraft areas with the use of the Doppler velocity (w). Tables 2 and 3 compare the results of ACIr and ACIN calculated20

for all LWP bins. Both parameters seem to indicate stronger relation between cloud properties (re and Nd) and aerosol properties

(ATB) in the updraft areas. This is implicated by the increase of both the ACI metrics as well as the correlation coefficients.

It is important to note that the amount of available profiles is greatly diminished by the selection of updraft areas only. In the

aggregated dataset from the CESAR Observatory roughly one-fourth of the profiles is located in the updraft areas. The number

of samples in LWP bins over 100 gm-2 is too small to make significant conclusions. However, we can clearly observe that both25

ACIr and ACIN have the highest values in the LWP bins between 60 and 80 gm-2.

5.3 Relation with LWP

One of the conditions for observing changes in microphysical properties of clouds due to an increasing pollution (later repre-

sented by aerosol) initially postulated by Twomey (1977) was the constant amount of water available. Over the past decades

different studies used that conditions with liberty. In the satellite remote-sensing quantification of ACI the constraint of LWP30

is often omitted (e.g., Kaufman et al., 2005). In the ground-based remote sensing methods the LWP constraint is kept, but the

size of LWP bins varies greatly. The division into LWP bins is important as it is still not clear if ACI is a significant process in

different LWP regimes.
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In this study we decided to divide data into LWP bins 10 gm-2 wide. The values of LWP we consider are between 30 and 150

gm-2. Values of ACIr are plotted against LWP on Figure 8. We observe an increase of ACIr with LWP in the range between 30

and 100 gm-2. If we makes same comparison for the updraft areas only (Figure 9) we get similar results, with an exception of

LWP between 30 and 50 gm-2, where ACIr reaches values out of bounds. Further, the updraft only dataset suggests that ACIr

is strongest for LWP between 60 and 80 gm-2. For the higher values of LWP the ACI processes are most probably obscured by5

collision and coalescence.

5.4 Relation between correlation coefficient (r) and ACIr

Most of the studies concerned with aerosol–cloud interactions calculate either ACIr (Eq. 5), ACIN (Eq. 4) or both to quantify

the relationship between aerosol and cloud properties. As we explained before, in mathematical terms ACIr and ACIN are a10

slope of the regression line calculated between natural logarithm of the aerosol properties and a natural logarithm of the cloud

properties. The aerosol property is treated as the independent variable and the cloud property is the dependent variable. As we

explained in Section 2, correlation coefficient and slope of the regression line are related as in Eq. 8.

For the dataset from the CESAR Observatory we compared the values of ACIr with the values of the correlation coefficient.

We did this comparison for every LWP bin for the whole dataset and then separately only for the profiles corresponding to the15

updraft area and to the downdraft area. Figure 10 presents the scatter plot between ACIr and the correlation coefficient. We

observe higher values of both ACIr and the correlation coefficient in the updraft areas. We also observe that most of the values

of ACIr outside of the physical bounds are observed for the downdraft areas of the whole dataset. This further underlines the

impact of the updraft on the aerosol–cloud interactions. Moreover, most of the values outside of the physical bounds of ACIr,

regardless of the updraft or downdraft zone, are observed for either high or very low values of LWP (above 110 and lower than20

50 g/m2). This again indicates importance of the value of LWP for the evaluation of the aerosol–cloud interactions processes.

The relation between the correlation coefficient and ACIr is mathematically sound, however, not often presented in the litera-

ture. This relation between the two parameters is only significant when data is sampled at a high temporal and spatial resolution

and divided into bins of LWP. In case of no constraint on LWP or data with a low spatial resolution (i.e. satellite remote sensing

aggregated datasets) the calculation of the correlation coefficient will become irrelevant, as the variance of the dataset will be25

minimized by the aggregation (McComiskey and Feingold, 2012). In case of the ACI monitoring scheme calculating both ACIr

and the correlation coefficient is relevant, as data is collected with a temporal and spatial resolution that corresponds to the

scale of the aerosol–cloud interactions processes.

6 Summary and conclusions

In this paper we presented a direct application of the Aerosol–Cloud Interactions monitoring scheme as presented in (Sarna30

and Russchenberg, 2016). We used Cloudnet dataset from the CESAR Observatory in the Netherlands. Data were collected

during the ACCEPT measuring campaign in October - November 2014. We aggregated daily measurements into one dataset
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based on the similar meteorological conditions. We only considered non-precipitating low-level liquid water clouds. All forms

of precipitation where disregarded based on the Cloudnet target categorisation. Investigated clouds had the cloud base located

between 500 and 2000 m above ground level. Lastly, we only used periods when conditions corresponding to the above

mentioned criteria were persisting for at least 30 minutes.

For the aggregated dataset we calculated ACI metrics using cloud droplets effective radius (re) following Eq. 5 and cloud5

droplets number concentration (Nd) following Eq. 4. The aerosol properties where represented by the integrated attenuated

backscatter coefficient (ATB). For both ACI metrics we also calculate Pearson’s moment correlation coefficient, r. For all the

above mentioned calculations data were divided into bins of liquid water path (LWP), where every bin was 10 g/m2 wide. The

calculated values of ACIr were ranging from 0.016 to 0.17, which widely corresponds to the values reported in previous studies.

The values of ACIN where significantly lower than those reported in the literature. We attribute that to two reasons. Firstly, the10

retrieval of Nd is susceptible to high error, varying between 40 and 60% due to instrument errors and retrieval assumptions.

Secondly, the aerosol background over the CESAR Observatory is characteristic of the continental aerosol background whereas

most studies calculating ACIN are located in the marine or coastal areas. The size of continental aerosol is significantly smaller

which can lead to smaller values of ACIN. Considering high uncertainty of Nd retrieval, we recommend the calculation of ACIr

for accounting the impact of aerosol on the cloud microphysics.15

We also evaluated impact of the updraft and LWP on ACI metrics. In the analyzed dataset both of those parameters showed

clear impact on the values of ACIr. The values of ACIr were highest for the LWP between 50 and 100 g/m2. For the higher

values of LWP other processes, such as collision and coalescence, seem to be dominant and obscure the ACI processes. We also

saw that the values of ACIr are higher when only data points located in the updraft area are considered. As indicated in previous

studies, the updraft is an important factor in invigorating aerosol–cloud interactions. The values of ACIr in the downdraft area20

were often outside of the physical bounds. It is desirable to only consider data points located in the updraft. However, it should

be noted that selection of updraft areas only significantly decreases the data sample.

The ACI metrics is used to account for the proportionality factor between aerosol number concentration and cloud droplet

number concentration (Eq. 3). In this study we explained that the correlation coefficient and ACI metrics can be related for the

high-resolution dataset, as ACI metric is the slope of the regression line between cloud and aerosol properties. We observed25

a decrease of the correlation coefficient with the increase of the ACIr. We observed an inverse relation between aerosol and

cloud properties therefore lower value of correlation coefficient indicates higher dependency of the parameters.

The method presented in this study enables monitoring aerosol–cloud interactions daily and further aggregating daily data into

bigger datasets. We showed that it can be easily implemented at any observatory using Cloudnet data format. A wide-spread

network of aerosol–cloud interactions monitoring could lead to estimating more accurately the drivers of this process in various30

conditions. This methodology can be integrated into the Cloudnet network products. Further, as the methodology presented

here is based on the remote-sensing instruments only, it could be adapted to the satellite remote sensing. Such an adaptation

would have to be done with care and account for all the requirements of the data selection necessary for this method.
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Table 1. Cloud and Aerosol Properties Measured or Derived From the Observations at the CESAR Observatory in the Netherlands.

Measured Quantity Definition Instrument(s)

Cloud Liquid Water Path LWP (gm-2) HATPRO MWR

Radar Reflectivity Factor Z (dBZ or m6m-3) MIRA

Doppler Velocity w (ms-1) MIRA

Cloud Droplet Effective Radius re (µm) (Knist, 2014) MIRA/HATPRO MWR

Cloud Droplet Number Concentration Nd (cm-3) (Knist, 2014) MIRA/HATPRO MWR

Attenuated Backscatter Coefficient ATB [m-1sr-1] CHM15X ceilometer

Table 2. ACIr (Eq. 5) together with Pearson product-moment correlation coefficient, r, calculated between ln(re) and ln(ATB) calculated for

the aggregated dataset. Data is divided in to bins of LWP. ACIr is calculated for the whole dataset and only for the updraft areas. The number

of measurements in each bin (n) is also presented.

Whole dataset Only updraft

LWP bin ACIr r n ACIr r n

30 < LWP < 40 0.02 -0.04 342 -0.09 0.24 125

40 < LWP < 50 -0.03 0.07 291 -0.05 0.12 86

50 < LWP < 60 0.04 -0.08 256 0.03 -0.06 83

60 < LWP < 70 0.06 -0.12 175 0.26 -0.45 46

70 < LWP < 80 0.07 -0.16 175 0.22 -0.33 47

80 < LWP < 90 -0.04 0.08 102 0.14 -0.36 24

90 < LWP < 100 0.09 -0.20 89 0.16 -0.45 29

100 < LWP < 110 0.17 -0.30 84 0.17 -0.48 12

110 < LWP < 120 -0.08 0.14 45 0.25 -0.82 11

120 < LWP < 130 -0.01 0.02 40 -0.03 0.06 12

130 < LWP < 140 -0.04 0.06 38 0.06 -0.12 13

140 < LWP < 150 -0.06 0.16 27 -0.29 0.74 4
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Table 3. ACIN (Eq. 4) together with Pearson product-moment correlation coefficient, r, calculated between ln(Nd) and ln(ATB) calculated for

the aggregated dataset. Data is divided in to bins of LWP. ACIN is calculated for the whole dataset and only for the updraft areas. The number

of measurements in each bin (n) is also presented.

Whole dataset Only updraft

LWP bin ACIN r n ACIN r n

30 < LWP < 40 0.05 -0.04 342 -0.10 -0.08 125

40 < LWP < 50 -0.01 0.07 291 -0.04 -0.04 86

50 < LWP < 60 0.37 -0.08 256 0.05 0.04 83

60 < LWP < 70 0.48 -0.12 175 0.52 0.27 46

70 < LWP < 80 0.39 -0.16 175 0.80 0.44 47

80 < LWP < 90 0.26 0.08 102 0.00 0.00 24

90 < LWP < 100 0.29 -0.20 89 0.33 0.26 29

100 < LWP <110 0.16 -0.30 84 0.39 0.22 12

110 < LWP <120 -0.11 0.14 45 -0.12 -0.15 11

120 < LWP <130 -0.23 0.02 40 -0.17 -0.14 12

130 < LWP <140 0.19 0.06 38 -0.10 -0.11 13

140 < LWP <150 0.08 0.16 27 0.75 0.52 4
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Figure 1. Histograms of the meteorological data for the aggregated dataset.
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Figure 2. Histograms of the measurements and retrievals for the aggregated dataset.
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Figure 3. Histograms of the Doppler velocity for the aggregated dataset.
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Figure 4. Scatter plots of the integrated attenuated backscatter coefficient and cloud droplets effective radius. This plots represent all data

points from the aggregated dataset divided by the value of the liquid water path.
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Figure 5. Scatter plots of the integrated attenuated backscatter coefficient and cloud droplets effective radius. This plots represent only data

points from the updraft areas in the aggregated dataset divided by the value of the liquid water path. .
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Figure 6. Scatter plot of integrated attenuated backscatter coefficient and the cloud droplets number concentrations. This plots represents all

data points from the aggregated dataset.
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Figure 7. Scatter plots of integrated attenuated backscatter coefficient and the cloud droplets number concentrations divided by the value of

the liquid water path. This plots represents all data points from the aggregated dataset.

22

Atmos. Meas. Tech. Discuss., doi:10.5194/amt-2016-262, 2016
Manuscript under review for journal Atmos. Meas. Tech.
Published: 2 September 2016
c© Author(s) 2016. CC-BY 3.0 License.



40 60 80 100 120 140

LWP

-0.1

-0.05

0

0.05

0.1

0.15

0.2

A
C

I r 

ACI
r
 vs. LWP

40 60 80 100 120 140

LWP [g m
-2

]

Figure 8. Scatter plot between ACIr and LWPfor all data points in the aggregated dataset.
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Figure 9. Scatter plot between ACIr and LWP for the data points located in the updraft areas of the aggregated dataset.
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Figure 10. Scatter plot between ACIr and the Pearson product-moment correlation coefficient, r.
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